General Relativity and Gravitational Waves - Joseph Weber - 2004
An internationally famous physicist and electrical engineer, the author of this text was a pioneer in the investigation of gravitational waves. Joseph Weber's General Relativity and Gravitational Waves offers a classic treatment of the subject. Appropriate for upper-level undergraduates and graduate students, this text remains ever relevant. Brief but thorough in its introduction to the foundations of general relativity, it also examines the elements of Riemannian geometry and tensor calculus applicable to this field. Approximately a quarter of the contents explores theoretical and experimental aspects of gravitational radiation. The final chapter focuses on selected topics related to general relativity, including the equations of motion, unified field theories, Friedman's solution of the cosmological problem, and the Hamiltonian formulation of general relativity. Exercises. Index.

General Relativity and Gravitational Waves - Joseph Weber - 2004
An internationally famous physicist and electrical engineer, the author of this text was a pioneer in the investigation of gravitational waves. Joseph Weber's General Relativity and Gravitational Waves offers a classic treatment of the subject. Appropriate for upper-level undergraduates and graduate students, this text remains ever relevant. Brief but thorough in its introduction to the foundations of general relativity, it also examines the elements of Riemannian geometry and tensor calculus applicable to this field. Approximately a quarter of the contents explores theoretical and experimental aspects of gravitational radiation. The final chapter focuses on selected topics related to general relativity, including the equations of motion, unified field theories, Friedman's solution of the cosmological problem, and the Hamiltonian formulation of general relativity. Exercises. Index.

Gravity - James B. Hartle - 2021-06-24
Best-selling, accessible physics-first introduction to GR uses minimal new mathematics and begins with the essential physical applications.

Gravity - James B. Hartle - 2021-06-24
Best-selling, accessible physics-first introduction to GR uses minimal new mathematics and begins with the essential physical applications.

General Relativity and Gravitational Physics - Giampiero Esposito - 2005-03-29
All papers were peer reviewed. Research advances in gravitation and general relativity are discussed, ranging from classical to quantum theories of gravity. Relativistic theories have become the basic model for new research fields encompassing important experiments and observations which represent a frontier on which Einstein's theory of gravity can be tested. This will provide some new insight into the field of gravitational physics. The proceedings will be a valuable source for advanced graduate students and research workers at all levels.

General Relativity and Gravitational Physics - Giampiero Esposito - 2005-03-29
All papers were peer reviewed. Research advances in gravitation and general relativity are discussed, ranging from classical to quantum theories of gravity. Relativistic theories have become the basic model for new research fields encompassing important experiments and observations which represent a frontier on which Einstein's theory of gravity can be tested. This will provide some new insight into the field of gravitational physics. The proceedings will be a valuable source for advanced graduate students and research workers at all levels.

Modern General Relativity - Mike Guidry - 2019-01-03
Einstein's general theory of relativity is widely considered to be one of the most elegant and successful scientific theories ever developed, and it is increasingly being taught in a simplified form at advanced undergraduate level within both physics and mathematics departments. Due to the increasing interest in gravitational physics, in both the academic and the public sphere, driven largely by widely-publicised developments such as the recent observations of gravitational waves, general relativity is also one of the most popular scientific topics pursued through self-study. Modern General Relativity introduces the reader to the general theory of relativity using an example-based approach, before describing some of its most important applications in cosmology and astrophysics, such as gamma-ray bursts, neutron stars, black holes, and gravitational waves. With hundreds of worked examples, explanatory boxes, and end-of-chapter problems, this
achieved achievements of twentieth-century physics.

Modern General Relativity - Mike Guiry - 2019-01-03

Einstein’s general theory of relativity is widely considered to be one of the most elegant and successful scientific theories ever developed, and it is increasingly being taught in a simplified form at advanced undergraduate level within both physics and mathematics departments. Due to the increasing interest in gravitational physics, in both the academic and the public sphere, driven largely by widely-publicised developments such as the recent observations of gravitational waves, general relativity is also one of the most popular scientific topics pursued through self-study. Modern General Relativity introduces the reader to the general theory of relativity using an example-based approach, before describing some of its most important applications in cosmology and astrophysics, such as gamma-ray bursts, neutron stars, black holes, and gravitational waves. With hundreds of worked examples, explanatory boxes, and end-of-chapter problems, this textbook provides a solid foundation for understanding one of the towering achievements of twentieth-century physics.

From the individual to the largest organization, everyone today has to make investments in information technology. Making a good investment that will best satisfy all the necessary decision criteria requires a careful and inclusive analysis. Information Technology Investment: Decision-Making Methodology is a textbook that will provide the understanding of methodologies available to aid in this area of complex, multi-criterion decision-making. It presents a detailed, step-by-step set of procedures and methodologies that allow one to use immediately to improve their IT investment decision-making. Unique to this textbook are both financial investment models and more complex decision-making models from management science, so users can extend the analysis benefits to confirm and enhance the ideal IT investment choices. A complimentary copy of the ‘Instructor’s Manual and Test Bank’ and the PowerPoint presentations of the text materials are available for all instructors who adopt this book as a course text. Please send your request to sales@wspc.com.

From the individual to the largest organization, everyone today has to make investments in information technology. Making a good investment that will best satisfy all the necessary decision criteria requires a careful and inclusive analysis. Information Technology Investment: Decision-Making Methodology is a textbook that will provide the understanding of methodologies available to aid in this area of complex, multi-criterion decision-making. It presents a detailed, step-by-step set of procedures and methodologies that allow one to use immediately to improve their IT investment decision-making. Unique to this textbook are both financial investment models and more complex decision-making models from management science, so users can extend the analysis benefits to confirm and enhance the ideal IT investment choices. A complimentary copy of the ‘Instructor’s Manual and Test Bank’ and the PowerPoint presentations of the text materials are available for all instructors who adopt this book as a course text. Please send your request to sales@wspc.com.

General Relativity And Gravitational Physics - Proceedings Of The 11th Italian Conference - Carfora Mauro - 1996-08-30

Relativity, Gravitation and Cosmology - Ta-Pei Cheng - 2010-01

This book provides an introduction to Einstein’s general theory of relativity. A “physics-first” approach is adopted so that interesting applications come before the more difficult task of solving the Einstein equation. The book includes extensive coverage of cosmology, and is designed to allow readers to study the subject alone.

Relativity, Gravitation and Cosmology - Ta-Pei Cheng - 2010-01

This book provides an introduction to Einstein’s general theory of relativity. A “physics-first” approach is adopted so that interesting applications come before the more difficult task of solving the Einstein equation. The book includes extensive coverage of cosmology, and is designed to allow readers to study the subject alone.

Gravitation - Charles W. Misner - 2017-10-24

The foundations are thoroughly developed together with the required mathematical background from differential geometry developed in Part III. The author also discusses the tests of general relativity in detail, including binary pulsars, with much space is devoted to the study of compact objects, especially to neutron stars and to the basic laws of black-hole physics. This well-structured text and reference enables readers to easily navigate through the various sections as best matches their backgrounds and perspectives, whether mathematical, physical or astronomical. Very applications oriented, the text includes very recent results, such as the supermassive black-hole in our galaxy and first double pulsar system

Gravity from the Ground Up - Bernard Schutz - 2003-12-04

Table of contents

Elements of General Relativity - Piotr T. Chruściel - 2020-03-19

This book provides an introduction to the mathematics and physics of general relativity, its basic physical concepts, its observational implications, and the new insights obtained into the nature of space-time and the structure of the universe. It introduces some of the most striking aspects of Einstein's theory of gravitation: black holes, gravitational waves, stellar models, and cosmology. It contains a self-contained introduction to tensor calculus and Riemannian geometry, using in parallel the language of modern differential geometry and the coordinate notation, more familiar to physicists. The author has strived to achieve mathematical rigour, with all notions given careful mathematical meaning, while trying to maintain the formalism to the minimum fit-for-purpose. Familiarity with special relativity is assumed. The overall aim is to convey some of the main physical and geometrical properties of Einstein's theory of gravitation, providing a solid entry point to further studies of the mathematics and physics of Einstein equations.

This authoritative volume provides a snapshot of the state of the art in gravitational physics and related mathematical fields, as well as a review of recent achievements and prospects for future work. With contributing authors among the world leaders in their respective fields, this proceedings volume is a worthy addition to this conference series, which constitutes one of the most important international meetings in the areas general relativity and gravitation. Contents: Towards Detection of Gravitational Waves (B. C. Teoh)Black Holes and the Information Paradox (S. Hawking)Probing General Relativity on Sub-Minute Timescales (K. Kundic)Revisiting Superstrings Revisited (J. Polchinski)Black Holes in Active Galactic Nuclei (M. Rees)Methods, Twisters, and Countless Variables (J. Lewandowski)Early Universe (M. Sasaki)Dark Energy and the Cosmological Constant (V. Sahni)Gravitational Wave Sources: Science Source and Statistical Methods (A. Buonanno)Detector Performance, Operation, and Commissioning (E. Combalia)Laboratory and Observational Tests of Gravitational Theories (J. H. Gundlach)Quantum Field Theory on Curved Spacetime (K. Fredenhagen) and other papers Readings: Researchers and academics in astrophysics, astronomy, cosmology, quantum physics, theoretical physics and mathematical physics.

General Relativity and Gravitation - Petros Florides - 2005-11-07

This authoritative volume provides a snapshot of the state of the art in gravitational physics and related mathematical fields, as well as a review of recent achievements and prospects for future work. With contributing authors among the world leaders in their respective fields, this proceedings volume is a worthy addition to this conference series, which constitutes one of the most important international meetings in the areas general relativity and gravitation. Contents: Towards Detection of Gravitational Waves (B. C. Teoh)Black Holes and the Information Paradox (S. Hawking)Probing General Relativity on Sub-Minute Timescales (K. Kundic)Revisiting Superstrings Revisited (J. Polchinski)Black Holes in Active Galactic Nuclei (M. Rees)Methods, Twisters, and Countless Variables (J. Lewandowski)Early Universe (M. Sasaki)Dark Energy and the Cosmological Constant (V. Sahni)Gravitational Wave Sources: Science Source and Statistical Methods (A. Buonanno)Detector Performance, Operation, and Commissioning (E. Combalia)Laboratory and Observational Tests of Gravitational Theories (J. H. Gundlach)Quantum Field Theory on Curved Spacetime (K. Fredenhagen) and other papers

This authoritative volume provides a snapshot of the state of the art in gravitational physics and related mathematical fields, as well as a review of recent achievements and prospects for future work. With contributing authors among the world leaders in their respective fields, this proceedings volume is a worthy addition to this conference series, which constitutes one of the most important international meetings in the areas general relativity and gravitation. First appearance in print.
This authoritative volume provides a snapshot of the state of the art in gravitational physics and related mathematical fields, as well as a review of recent achievements and prospects for future work. With contributing authors among the world leaders in their respective fields, this proceedings volume is a worthy addition to this conference series, which constitutes one of the most important international meetings in the areas general relativity and gravitation. Contents: Towards Detection of Gravitational Waves (B. Barbish)Black Holes and Information Loss (I. Hawking)The General Relativity on the Scales of Cosmology (P. J. Peebles)Cosmic Superstrings Revisited (J. Polchinski)Black Holes in Active Galactic Nuclei (M. Rees)Complex Methods, Twistor, and Connection Variables (J. Lewandowski)Early Universe (M. Sasaki)Dark Energy and The Cosmological Constant (Y. Sako)Gravitational Wave Sources: Source Science and Statistical Methods (A. Buonanno)Detector Performance, Operation, and Commissioning (E. Coccia)Laboratory and Observational Tests of Gravitational Theories (H. Gundlach)Quantum Field Theory on Curved Spacetime (K. Fredenhagen)and other papers. Readership: Researchers and academics in astrophysics, astronomy, cosmology, quantum physics, theoretical physics and mathematical physics.

Keywords: Gravitation; General Relativity; Cosmology; Quantum Gravity; Numerical Relativity; Astrophysics; String Theory; Key Features: Includes the latest developments in all areas of gravitational physics Contributions by world-leading researchers in the field Continues the high standard of the general relativity conference proceedings series Reviews: "...this volume provides a nice summary of a considerable portion of general relativity just after the turn of the century...It contains some thought-provoking articles as well as some useful, thoughtful reviews." General Relativity and Gravitation.

Formulations of General Relativity - Kirill Krasnov - 2020-11-26
Carefully documenting the different formulations of general relativity, the author reveals valuable insight into the nature of the gravitational force and its interaction with matter. This book will interest graduate students and researchers in the fields of general relativity, gravitational physics and differential geometry.

Formulations of General Relativity - Kirill Krasnov - 2020-11-26
Carefully documenting the different formulations of general relativity, the author reveals valuable insight into the nature of the gravitational force and its interactions with matter. This book will interest graduate students and researchers in the fields of general relativity, gravitational physics and differential geometry.

Variational Approach to Gravity Field Theories - Alberto Vecchiato - 2017-05-30
This book offers a detailed and stimulating account of the Lagrangian, or variational, approach to general relativity and beyond. The approach more usually adopted when describing general relativity is to introduce the required concepts of differential geometry and derive the field and geodesic equations from purely geometrical properties. Demonstration of the physical meaning then requires the weak field approximation of these equations to recover their Newtonian counterparts. The potential downside of this approach is that it tends to suit the mathematical mind and requires the physicist to study and work in a completely unfamiliar environment. In contrast, the approach to general relativity described in this book will be especially suited to physics students. After an introduction to field theories and the variational approach, individual sections focus on the variational approach in relation to special relativity, general relativity, and alternative theories of gravity. Throughout the text, solved exercises and examples are presented. The book will meet the needs of both students specializing in theoretical physics and those seeking a better understanding of particular aspects of the subject.

Variational Approach to Gravity Field Theories - Alberto Vecchiato - 2017-05-30
This book offers a detailed and stimulating account of the Lagrangian, or variational, approach to general relativity and beyond. The approach more usually adopted when describing general relativity is to introduce the required concepts of differential geometry and derive the field and geodesic equations from purely geometrical properties. Demonstration of the physical meaning then requires the weak field approximation of these equations to recover their Newtonian counterparts. The potential downside of this approach is that it tends to suit the mathematical mind and requires the physicist to study and work in a completely unfamiliar environment. In contrast, the approach to general relativity described in this book will be especially suited to physics students. After an introduction to field theories and the variational approach, individual sections focus on the variational approach in relation to special relativity, general relativity, and alternative theories of gravity. Throughout the text, solved exercises and examples are presented. The book will meet the needs of both students specializing in theoretical physics and those seeking a better understanding of particular aspects of the subject.

Exact Space-Times in Einstein's General Relativity - Jerry B. Griffiths - 2009-10-15
Einstein's theory of general relativity is a theory of gravity and, as in the earlier Newtonian theory, much can be learnt about the character of gravitation and its effects by investigating particular idealized examples. This book describes the basic solutions of Einstein's equations with a particular emphasis on what they mean, both geometrically and physically. Concepts such as big bang and big crunch-types of singularities, different kinds of horizons and gravitational waves, are described in the context of the particular space-times in which they naturally arise. These notions are initially introduced using the most simple and symmetric cases. Various important coordinate forms of each solution are presented, thus enabling the global structure of the corresponding space-time and its other properties to be analysed. The book is an invaluable resource for both graduate students and academic researchers working in gravitational physics.

Exact Space-Times in Einstein's General Relativity - Jerry B. Griffiths - 2009-10-15
Einstein's theory of general relativity is a theory of gravity and, as in the earlier Newtonian theory, much can be learnt about the character of gravitation and its effects by investigating particular idealized examples. This book describes the basic solutions of Einstein's equations with a particular emphasis on what they mean, both geometrically and physically. Concepts such as big bang and big crunch-types of singularities, different kinds of horizons and gravitational waves, are described in the context of the particular space-times in which they naturally arise. These notions are initially introduced using the most simple and symmetric cases. Various important coordinate forms of each solution are presented, thus enabling the global structure of the corresponding space-time and its other properties to be analysed. The book is an invaluable resource for both graduate students and academic researchers working in gravitational physics.

Recent Developments in Gravitational Physics - I. Ciufolini - 2006-02-21
This volume provides an overview of the progress in gravitational physics, reporting recent theoretical, experimental and observational results. The book is based on the plenary and invited lectures presented at the biennial conference of the Italian Society of General Relativity and Gravitation (SIGRAV) held in Rome, September 2002. The contributors discuss topics such as general relativity, quantum gravity, relativistic astrophysics, cosmology and experimental gravitation. This book is ideal for researchers and postgraduate students in relativity, gravitation, cosmology, astrophysics and high energy physics.

Recent Developments in Gravitational Physics - I. Ciufolini - 2006-02-21
This volume provides an overview of the progress in gravitational physics, reporting recent theoretical, experimental and observational results. The book is based on the plenary, invited and contributed papers presented at the biennial conference of the Italian Society of General Relativity and Gravitation (SIGRAV) held in Rome, September 2002. The contributors discuss topics such as general relativity, quantum gravity, relativistic astrophysics, cosmology and experimental gravitation. This book is ideal for researchers and postgraduate students in relativity, gravitation, cosmology, astrophysics and high energy physics.

7th Italian Conference on General Relativity and Gravitational Physics, Rapallo (Genoa), September 3-6, 1986 - Ugo Bruzzi - 1987
7th Italian Conference on General Relativity and Gravitational Physics, Rapallo (Genoa), September 3-6, 1986 - Ugo Bruzzi - 1987

General Relativity - Michael J W Hall - 2018-03-23
This book is based on a set of 18 class-tested lectures delivered to fourth-year physics undergraduates at Griffith University in Brisbane, and the book presents new discoveries by the Nobel-prize winning LIGO collaboration. The author begins with a review of special relativity and tensors and then develops the basic elements of general relativity (a beautiful theory that unifies special relativity and gravity via geometry) with applications to the gravitational deflection of light, global positioning systems, black holes, gravitational waves, and cosmology. The book provides readers with a solid understanding of the underlying physical concepts; an ability to appreciate and in many cases derive important applications of the theory; and a solid grounding for those wishing to pursue their studies further. General Relativity: An Introduction to Gravitational Waves and Cosmology also connects general relativity with broader topics. There is no doubt that general relativity is an active and exciting field of physics, and this book successfully transmits that excitement to readers.
General Relativity and Gravitation - B. Bertotti - 2012-12-06

The Tenith International Conference on General Relativity and Gravitation (GR10) was held from July 3 to July 8, 1983, in Padova, Italy. These conferences take place every three years, under the auspices of the International Society on General Relativity and Gravitation, in order to assess the current research in the field, critically discussing the progress made and disclosing the points of paramount importance. The conference was addressed by invited speakers on general relativity and gravitation via geometry and applications to the gravitational deflection of light, global positioning systems, black holes, and cosmology. The book includes recent advances in gravitational wave astronomy and provides a general overview of current lines of research in gravity. It also includes numerous examples and problems in each chapter.

Introduction to General Relativity - Cosimo Bambi - 2018-06-18

Following the approach of Lev Landau and Evgenii Lifshitz, this book introduces the theory of special and general relativity with the Lagrangian formalism and the principle of least action. This method allows the complete theory to be constructed starting from a small number of assumptions, and is the most natural approach in modern theoretical physics. The book begins by reviewing Newtonian mechanics and Newtonian gravity with the Lagrangian formalism and the principle of least action, and then moves to special and general relativity. Most calculations are presented step by step, as is done on the board in class. The book covers recent advances in gravitational wave astronomy and provides a general overview of current lines of research in gravity.
The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.

Topics in the Foundations of General Relativity and Newtonian Gravitation Theory - David B. Malament - 2012-04-02
In Topics in the Foundations of General Relativity and Newtonian Gravitation Theory, David B. Malament presents the basic logical-mathematical structure of general relativity and considers a number of special topics concerning the foundations of general relativity and its relation to Newtonian gravitation theory. These special topics include the geometrized formulation of Newtonian theory (also known as Newton-Cartan theory), the concept of rotation in general relativity, and Gödel spacetime. One of the highlights of the book is a no-go theorem that can be understood to show that there is no criterion of orbital rotation in general relativity that fully answers to our classical intuitions. Topics is intended for both students and researchers in mathematical physics and philosophy of science.

Topics in the Foundations of General Relativity and Newtonian Gravitation Theory - David B. Malament - 2012-04-02
Colliding Plane Waves in General Relativity - J.B. Griffiths - 2016-04-06
Gravitation Theory, David B. Malament presents the basic logical-mathematical structure of general relativity and considers a number of special topics concerning the foundations of general relativity and its relation to Newtonian gravitation theory. These special topics include the geometrized formulation of Newtonian theory (also known as Newton-Cartan theory), the concept of rotation in general relativity, and Gödel spacetime. One of the highlights of the book is a no-go theorem that can be understood to show that there is no criterion of orbital rotation in general relativity that fully answers to our classical intuitions. Topics is intended for both students and researchers in mathematical physics and philosophy of science.

10th Italian Conference on General Relativity & Gravitational Physics, Bardonecchia (Torino), September 1-5, 1992 - Massimo Cerdonio - 1994

10th Italian Conference on General Relativity & Gravitational Physics, Bardonecchia (Torino), September 1-5, 1992 - Massimo Cerdonio - 1994

Proceedings of the 16th International Conference on General Relativity & Gravitation - Nigel Bishop - 2002
The 16th conference of the International Society on General Relativity and Gravitation (GR16), held at the International Convention Centre in Durban, South Africa, from 15 to 21 July, was attended by 450 delegates from around the world. The scientific programme comprised 18 plenary lectures, 1 public lecture and 19 workshops which, excepting 3 plenary lectures, are presented in this proceedings. It was the first major international conference on general relativity and gravitation held on the African continent.

Relativity, Gravitation and Cosmology - Robert J. Lambourne - 2010-06
The textbook introduces students to basic geometric concepts, such as metrics, connections and curvature, before examining general relativity in more detail. It shows the observational evidence supporting the theory, and the description general relativity provides of black holes and cosmological spacetimes.

Relativity, Gravitation and Cosmology - Robert J. Lambourne - 2010-06
The textbook introduces students to basic geometric concepts, such as metrics, connections and curvature, before examining general relativity in more detail. It shows the observational evidence supporting the theory, and the description general relativity provides of black holes and cosmological spacetimes.

This monograph surveys recent research on the collision and interaction of gravitational and electromagnetic waves. "This is a particularly important topic in general relativity," the author notes, "since the theory predicts that there will be a nonlinear interaction between such waves." Geared toward graduate students and researchers in general relativity, the text offers a comprehensive and unified review of the vast literature on the subject. The first eight chapters offer background, presenting the field equations and discussing some qualitative aspects of their solution. Subsequent chapters explore further exact solutions for colliding plane gravitational waves and the collision and interaction of electromagnetic waves. The final chapters summarize all related results for the collision of plane waves of different types and in non-flat backgrounds. A new postscript updates developments since the book's initial 1991 publication.

Colliding Plane Waves in General Relativity - J.B. Griffiths - 2016-04-06
This monograph surveys recent research on the collision and interaction of gravitational and electromagnetic waves. "This is a particularly important topic in general relativity," the author notes, "since the theory predicts that there will be a nonlinear interaction between such waves." Geared toward graduate students and researchers in general relativity, the text offers a comprehensive and unified review of the vast literature on the subject. The first eight chapters offer background, presenting the field equations and discussing some qualitative aspects of their solution. Subsequent chapters explore further exact solutions for colliding plane gravitational waves and the collision and interaction of electromagnetic waves. The final chapters summarize all related results for the collision of plane waves of different types and in non-flat backgrounds. A new postscript updates developments since the book's initial 1991 publication.